Rebelway - Intro To Machine Learning
探索人工智能的基本知识:理论、算法和应用。掌握 Python 和用于实际解决方案的顶级库。获得使用机器学习训练自己的人工智能的信心
课程细分
本课程全面介绍人工智能 (AI) 和机器学习 (ML) 的基础知识。
它首先概述了人工智能的历史演变及其在当今各个行业中的重要性。参与者将深入研究基本的 ML 算法并探索它们在现代技术中的应用。本课程涵盖了广泛的 ML 架构和模型,包括监督和无监督学习、迁移学习、NLP 和计算机视觉。还讨论了神经网络、Transformer 和 Houdini 等 DCC 工具等高级主题。
通过实践练习,学生将获得数据科学基础知识的实践经验,包括数学概念、用于数据处理的 Python 编程以及使用 ScikitLearn、TensorFlow 和 PyTorch 等流行库进行性能评估。
课程最后重点介绍如何部署可用于生产的 ML 模型,以及了解机器学习和数据管道的复杂性。
THE ULTIMATE GUIDE TO MACHINE LEARNING AND AI DEVELOPMENT
Explore AI essentials: theory, algorithms, and applications. Master Python and top libraries for real-world solutions. Gain confidence in training your own AI using Machine Learning
COURSE BREAKDOWN
This course provides a comprehensive introduction to the basics of Artificial Intelligence (AI) and Machine Learning (ML).
It begins with an overview of AI's historical evolution and its significance across various industries today. Participants will delve into fundamental ML algorithms and explore their applications in modern technologies. The course covers a wide range of ML architectures and models, including supervised and unsupervised learning, transfer learning, NLP, and computer vision. Advanced topics such as neural networks, transformers, and DCC tools like Houdini are also discussed.
Through practical exercises, students will gain hands-on experience in data science fundamentals, including mathematical concepts, Python programming for data manipulation, and performance evaluation using popular libraries like ScikitLearn, TensorFlow, and PyTorch.
The course concludes with a focus on deploying production-ready ML models and understanding the intricacies of machine learning and data pipelines.
常见问题,点击查询: | ||
●CGer(Cg儿)资源下载帮助 | ||
●资源名词解释 | ||
●注册/登陆问题 | ||
●充值出错/修改密码/忘记密码 | ||
●充值赠送系统 | ||
●文件解压出错/解压密码 | ||
●Payment with Paypal | ||
●哪些资源会被列为付费资源 | ||
●为何要充值解锁 | ||
●免责条款 | ||
●联系站长(联系站长前请先仔细阅读 免责条款 ,网站只提供资源,不提供软件安装等服务!) |